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Uniform Expansion of the Transition Rate 
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Kramers' model of diffusion over potential barriers, e.g., chemical reactions, 
based on the noise activated escape of a particle from a potential well, is 
considered. Kramers derived escape rates valid for intermediate and large 
damping, and in a separate analysis, for small damping. In the small damping 
limit, Kramers' intermediate result reduces to the transition state rate which does 
not agree with the small damping result. A new escape rate is derived that is 
uniformly valid for all values of the damping coefficient. The new rate reduces 
to Kramers' results in the appropriate limits and, in particular, connects Kra- 
mers' intermediate and small damping results. 

KEY WORDS: First passage time; transition rate; Langevin equation; 
Kramers. 

1. INTRODUCTION 

In 1940, H. A. Kramers (1) introduced a diffusion model for chemical 
reactions, based on the Langevin equation of motion 

+ p2 + U ' (x )  = ( l .1)  
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Fig. 1. Sketch of the potential well in which the particle is confined. Point A is a stable 
equilibrium, and point C is an unstable equilibrium. 

for a particle in the potential field U ( x )  depicted in Fig. 1, subject to the 
thermal noise force ~(t). Here ((t) is Gaussian white noise with (~(t)) = 0 
and 

(~ ( t )~ ( t ' ) )  = 2 B k Z S ( t  - t') (1.2) 

where k is Boltzmann's constant. Kramers sought to calculate the reaction 
rate x, which is the rate of escape of the particle from the potential well in 
which it is confined. In particular he sought to determine the dependence 
of x on temperature T and on viscosity/3, and to compare the values found 
with the results of the transition state method. It should be noted that Eqs. 
(1.1)-(1.2) serve as a model for many activated processes (cf. Ref. 2), for 
which the escape rate determines their time evolution. 

The deterministic dynamics of the system, are governed by (1.1) with 
= 0. Its phase space portrait is given in Fig. 2. The point x~ is a locally 

stable equilibrium, while the point x c is an unstable equilibrium. The phase 
space (x, y = 2) is divided into the domain of attraction D, of the stable 
equilibrium, and the rest of phase space. They are separated by the curve F, 
called the separatrix (cf. Fig. 2). All deterministic trajectories starting in D, 
tend to the stable equilibrium point. The trajectory that starts on the 
separatrix tends to the unstable equilibrium point x c. For ~ 4 = 0, trajectories 
of (1.1) leave D in finite, though possibly large time. If T is small, a 
trajectory starting in D, spends a long time z(A), fluctuating about x~, but 
because of the random noise 4, eventually reaches F and either leaves or 
returns to D, with equal probabilities. 

Kramers considered the activation energy E c (the depth of the poten- 
tial well which the particle seeks to escape), to be large compared to the 
thermal energy kT ,  and in fact determined not one, but three different 
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Fig. 2. Sketch of the domain of attraction D, in phase speed (x, ~), of the stable equilibrium. 
The boundary of D is the separatrix F. 

formulas for ~. In the Smoluchowski limit of/~ large, he obtained 

r176 e - E ~ / k r  (1.3) 
/~Sm- 27rfi 

where ~0 A = (U'(XA)) 1/2 is the frequency of oscillation at the bottom of the 
well, o) c = ( -  U'(xc)) L/2 is the imaginary frequency at the unstable equilib- 
rium points x~, and Ec = U(x~) - U(xA) [assuming without loss of general- 
ity that U(XA) = 0] is the depth of the well. For fl very small, he obtained 

,8Iowa - E~/~7" (1.4) 
Xl - -  2 ~ ' k ~  e 

where 

I~ =r (1.5) 

is the action of the constant energy trajectory E-=-y2/2 + U(x )=  E c, 
whose equation is y = y c ( x ) =  [2(Ec-  U(x))] ~/2 (see Fig. 3). Finally for 
intermediate fi = O(1) he obtained 

= r176 [ ( f i2+4w~) ' /2  Ec/~r x 2 ~ - file (1.6) 
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Fig. 3. Sketch of the separatrix F, and the energy curve E = E c in phase space. 

We observe that the intermediate result (1.6) reduces to the Smoluchowski 
result (1.3) as/3 ~ ~ .  However, as/3 ~ 0, Eq. (1.6) reduces to the transition 
state rate (3~ (TST) 

~~ - E c / k r  ( 1 . 7 )  KTS T ~ ~ e 

which does not agree well with the small/3 result (1.5). Thus there is a gap 
in the description of ~, which is intermediate between the results (1.6) and 
(1.4). Several authors (4'5~ recently attempted to bridge this gap, and to 
connect (1.6) with (1.4). These are discussed below. 

In this paper we derive a formula for ~ that is uniformly valid for all 
/3 > 0. Our formula reduces to each of the results (1.3), (1.6) and (1.4) in 
the appropriate limits, and in particular it connects Kramers' results (1.6) 
and (1.4). Our formula is based on the observation that ~ is the reciprocal 
of the mean time to escape the well. (6) This time is the sum of the mean 
time ~1(A) to reach energy level Ec, from the bottom of the well, and the 
mean time to proceed from Ec to F and then escape the well (see Fig. 3). 
The latter is twice the mean first passage time ~2(E~) from E c to F, since 
trajectories that reach F are equally likely to leave or to return to E = E c. 
Thus T2(E~) must be counted twice. Our uniform formula for ~ is therefore 
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given by 

l (1.8)  
/ unif- - ,/.I(A) jr. 2,/.2(Ec ) 

We show in Section 2, that ~-l(A) and 72(Ec) are, respectively, given by 

2vrkT eEc/kT_ 1 (1.9) 
~'I(A) - /3Iowa K1 

and 

2rcojce Ec/kTV 
r2(Ec) = r176 [(B2 + 4~2) , /2_/3]  (1.10) 

The result (1.9), derived by Krarners, and later by other authors (see, e.g., 
Refs. 7, 4, and the citations therein), under the assumption/3 << l, is in fact 
uniformly valid for all t9 > 0, as we show below. The function V in (1.10) is 
a boundary layer function, as described in Ref. 7, and is given by [see 
(2.30) below] 

V=r YC(X--~) erf[ oy/(2kT)l/2] (1.11) 

The function V is included in order to account for the fact that the curve 
E = E c lies within the boundary layer near I7, when/3 is small. Here p is the 
distance between F and the curve E =  E c, and y is the solution of 
(2.25)-(2.26) below. 

In the Appendix we show that for small/3, 

(112) 

so that for /3 small, rl(A ) = 0(1//3), while $2(Ec) = o(1), so that $1(A) 
>> m2(Ec), and (1.8) reduces to (1.4). In contrast for 13 = O(1) or larger, py is 
O(1) or larger for any point on E c away from x c, so that for small kT, 
r2(Ec) >> rl(A ) and (1.8) reduces to (1.6). 

Buttiker, Harris, and Landauer (4) connected (1.7) and (1.4) by employ- 
ing the formula 

(1 + 4akT//3I~) ' /2 -  1 [ BI~  A ) 
K"UL---- (1 +4akr//31c)l/2 + 1 k ~-~--~ e-E"/kr (1.13) 

where a is a parameter. This formula reduces to (1.4) as/3---> 0, while in the 
limit/3--) ~ ,  it reduces (for a = 1) to (1.7). Carmeli and Nitzan (5) bridged 
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the  g a p  b e t w e e n  (1.6) a n d  (1.4), wi th  the  f o r m u l a  

I I+er f { [ (a+l ) (Ec -E , ) / kT]  1/2} ]-' 
/~CN ~--- 2/~2 + r (1.14) 

whe re  ~2 is K r a m e r s '  resu l t  (1.6), a is g iven  b y  

'{I t l'J" } a = ~  1 +  - 1  

a n d  E 1 is the  ene rgy  a t  a n  i n t e r m e d i a t e  p o i n t  x = x,(x A < x, < xc), which  
is d e t e r m i n e d  f r o m  the t r a n s c e n d e n t a l  e q u a t i o n  

e x p (  - a(Ec - E l )  kT a(Er - El) ,/2 
k-T ) - ( a + l ) f l I  1 ( -~k-T ) \ 

with  11 d e n o t i n g  the a c t i o n  on  the t r a j e c t o r y  t h r o u g h  x 1 . T h e  q u a n t i t y  r is 
the  m e a n  f i rs t  p a s s a g e  t ime  f r o m  I -- 0 to I = 11, for  fl << 1, g iven  b y  

_ 1 ('lldIO~ E(I) ](~ [ E(I') ]dI' 
- 7 -  "I" 

where  

dE 
~oC J ) - dI 

Fig. 4. 

tf 
KTST l 

K I KCN 112 

Comparison of formulas for reaction rate ~ as a function of fl, for the potential 
U(x) = xZ(x 2 - 16x/5 + 6) with ~ = 0.5. All rates are normalized by XTST. 
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In Fig. 4, we compare the various formulas for ~. These include Kramers' 
results (1.6) and (1.4), the results (1.13) and (1.14), and our result (1.8). Our 
result (1.8) agrees closely with the result of Ref. 5 (see ~uNrv and ~cN in Fig. 
4). However (1.8) has the advantage that it is very simple to evaluate, in 
contrast to the result of Ref. 5. In addition, (1.8) was derived from 
mathematical considerations, whereas the result of Ref. 5 relies on physical 
intuition. The result of Ref. 4, which relies heavily on physical intuition, 
patches the curves KBH L and K 2 in Fig. 4. 

2. CALCULATION OF FIRST PASSAGE TIMES 

To calculate the transition rate ~, we must calculate 0-1(A ) and ~-2(Ec). 
To this end we introduce the mean first passage time 0h(x, y) to reach the 
critical energy level E = E C, starting at a point (x, y) in E < Ec, and then 
the mean first passage time ~-2(Ec) to proceed from there to the separatrix. 
We also find the distribution of exit points on E = Ec, which is necessary 
for the calculation of ~2(E~). 

The mean passage time ~h(x,y) from a starting point (x ,y )  in the 
domain E < E~ is a solution of the equation 

Lz] '~ 02~ + y  O~-I O~ =--epOy-- ~ --~x - [ f i y + U ' ( x ) ] - ~ y  = - 1 ,  in E<E~ (2.1) 

and the boundary condition 

~-] = 0, o n  E = E~ (2 .2 )  

The mean first passage time ~'1 out of a domain ~ is given by 

�9 , ( x ,y )=foo=f f  (2.3) 
2 

where p(x, y, t, ~, 7) is the transition density function for the solution of the 
Langevin equation (1.1), with absorption at the boundary of _~, to go from 
(x, y) to (~,~) in time t. The transition densityp(x,  y,t,~,7/) is the solution 
of the Fokker-Planck equation with respect to the variables (~, 7) and t, 
and of the backward Kolmogorov equation with respect to the variables 
(x ,y )  and t. Equation (2.1) is obtained by integrating the backward 
Kolmogorov equation for p(x, y, t, ~, 71) with respect to (~, 7), over ~ and t 
(see p. 1 18 of Ref. 8). 

We assume that kT << E~. Rather than nondimensionalizing the prob- 
lem we set e --= kT and assume e << 1. We now describe our method (6) for 
solving the problem (2.1), (2.2) for small e. As noted in Ref. 6, in the limit 
e-->O, rl(x, y) has the form 

.c~(x, y) = "r,(A)u(x, y) (2.4) 
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where ~t(A), which is exponentially large in c, is to be determined below, 
and maxDu(x, y)  = 1. The function u(x ,  y )  is a solution of 

- 1  in  E < E  c (2 .5 )  Lu - "q( A ) ' 

u = 0 ,  on E = E  C (2.6) 

Since 1/~h(A)-->0 as e ~ 0 ,  we consider the asymptotic solution of Lu ~- 0 
for E < E c. To leading order in e, u is the solution of the reduced equation 

au U ' (x ) ]  ~ = 0 (2.7) -[By+ ~ 

which can be written as 

du (x(0'  y ( 0 )  = 0 (2.8) 

where (x( t ) ,  y ( t ) )  is any trajectory of (1.1) with ( = 0. Thus u is constant on 
each trajectory. Since all trajectories converge to the stable equilibrium 
point A, and since u is continuous at A, u is constant for E < Ec. Hence by 
our normalization 

u = 1, E < E C (2.9) 

Since u must satisfy the boundary condition (2.6), (2.9) cannot be a valid 
approximation to u near E = Ec. Therefore we construct a boundary layer 
approximation to u, near E = E~ by introducing the stretching transforma- 
tion 

E ~ - E  
~/-- - -  ( 2 . 1 0 )  

and writing (2.5) in terms of ~/ near E = E c. The leading term of the 
boundary layer expansion is a solution of the boundary layer equation 

O2u + Ou O, 0 < ~/< ~ (2.11) 

subject to the boundary condition 

u = O, ~/= 0 (2.12) 

In addition, in order to match with the outer solution (2.9), u must satisfy 
the matching condition 

u ~ l ,  ~/---~ ~ (2.13) 

The boundary layer solution of (2.11)-(2.13) is therefore given by 

u = 1 - e -~ (2.14) 

In fact, (2.14) is the leading term of the uniform asymptotic expansion of 
(2.5), (2.6). To evaluate ~h(A), we multiply (2.1) by e -E(x' Y)/', which is a 
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solution of the adjoint equation L*Z = 0, and integrate over the domain 
E < E c, using the Green's or the Lagrange identity to obtain 

fE e - e / ~ dx dy 

T,(A) = e~ ~ e-e,/~flVz(OU/Oy)ds (2.15) 
E=Ec 

where v = (Vl, V2) is the unit outer normal to E = Ec, and s denotes 
arclength on E = E~. Employing (2.14) in (2.15) and evaluating the inte- 
grals in (2.15) asymptotically for small c, we obtain 

27rc eec/c (2.16) 
~' ,(A)~ /3I--~A 

This agrees with Kramers' small fl result given by (1.4), though we observe 
that (2.16) was derived for small e with/~ arbitrary. 

The time "rz(E~) to go from the curve E - -  E~ to F is the time to go 
from a point (x,y~(x)) on E = E~, weighted by the density of starting 
points on E = E~. The densityp(x) of points on E = Ec that were reached 
by a trajectory starting in E < E c,is Green's function G(x, y,~,~) for the 
boundary value problem 

Lw=O, for E < E ~  
(2.17) 

w = f ,  for E = E ~  

where f is any smooth function defined on E = Ec. Then (see p. 120 of 
Ref. 8), 

p(x) = G(x, y~(x),x A ,0) (2.18) 

The point A = (xA, 0) in (2.18) can in fact be replaced by any point inside 
E = Ec, since G(x,y,~,~) is independent of ( and 7, for (~,~) in the 
domain E < E~, as shown below [cf. (2.19)-(2.21)]. To determine G(x, y,~, 
7/) we solve (2.17) for small e. Setting e = 0 in (2.17) we find that the leading 
term in the asymptotic expansion of w, as E ~ 0, is a constant, w 0 say. To 
match this leading term to the boundary value we construct a boundary 
layer function as above. After matching, we obtain the uniform expansion 

w =~)E=EcG(x,y,~,,)f(~,~)ds~wo+ ( f -  Wo)e-" (2.19) 

where ~ is given by (2.10). To determine the constant w 0 we multiply (2.17) 
by e -E(x'y)/c, and use Green's or the Lagrange identity with w given by 
(2.19) to obtain 

Ce = Ec f (x '  y)y dx 

w o Ce=~ydx =~e=E f (x ,  y)p(x)ds (2.20) 
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Hence, to leading order in e, 

yc(x)dx 
p ( x ) d s  - ic (2.2t) 

We now calculate the mean first passage time %(Ec), of trajectories to 
go from E = Ec, to the separatrix 17. To this end we introduce the mean 
first passage time %(x, y) to reach F, starting inside, or on, E = Ec. We will 
show that 

= _ G(x,y,~,rl)r2(~,rOds~, (2.22) �9 2(x,y) ~,(x,y) +9~E_e~ 

which holds for all points (x, y) in the domain E < E~. The identity follows 
from the fact that both sides of (2.22) satisfy Lr = - 1  in E < E~, and 
coincide on E = E~. The function r2(x, y) is a solution of (2.1) subject to 
the boundary condition "r 2 = 0 on 17. We first write r2(x, y) = r2(A)v(x ,  y )  
where maxDv(x,  y ) =  1. As above, we construct the boundary layer func- 
tion v(x ,  y).  We change the independent variables in (2.5) to (x, 0), where O 
denotes distance to ]7. We stretch p by setting 

= 0 /~-  
to obtain the leading order boundary layer equation 

# ~ (x, o) - ~  ~ + ~bo(x) -~Ov +yr(x) = O, ~ > O, X < X  c 

(2.23) 

where the function yr(x) ,  which describes the separatrix, satisfies 

~' (x)  
y~(x) = - / 3  y r (x )  , yr(Xc) = 0 (2.24) 

Here we have used the representation of the flow vector 

b(x,  y)  - - ( y ,  - &  - V'(x))  = b0(x)( o + O ( # ) ) v  + (b,(x)  + o 0 ) ) a  

near p = 0, where o(1)---> 0 as p--> 0, and a and v are the unit tangent and 
unit exterior normal at F, respectively. The boundary condition for (2.23) is 
v = 0 for ~ = 0 and the matching condition is v ~ 1 as {--> oo. 

We now change variables by defining 

where 7(x) is the solution of the Bernoulli equation 

y r ( x ) 7 ' ( x )  + bo(x ) z (x )  = #O}(x, y r ( x ) ) e3 (x )  (2.25) 



Uniform Expansion of the Transition State in Kramers' Problem 453 

that satisfies the condition 

v(x<) = ~-VT-o) 
Boy ( xc , 

Here the functions b 0 and O/are, respectively, given by 

yr(X) U'(x)[ I - V"(x)] - &,~(x) U"(x) 
Do(x) = 

y~(x) + [ ~yr(~) + u'(~)] 2 

and 

o/(x,  yr (x) )  = 

Then (2.23) becomes 

yg(x) 

yg(x) + [ &~(x) + u'(x)] ~ 

(2.26) 

(2.27) 

(2.28) 

Yr(x) 3v _ 0 (2.29) 
B(ao/ay)2(x, o)v2(x) ax 

Equation (2.29) is a degenerate parabolic equation, whose unique solution 
is given by 

2 ]l/2( Ve _,V2 ds v(x, y) = ( ~ I .So = erf(oy/(-2e ) (2.30) 

To determine 1-2(A ) we again use the Lagrange identity as described 
above, to obtain 

-ff<-E/~ax+ 
~.2(A) = D (2.31) 

The integral in the denominator of (2.31) is evaluated asymptotically by 
Laplace's method. Since E(x, y) achieves its minimum on F at x = xc, it is 
only necessary to calculate Ov/Oy in (2.31) at 0 = 0 and x = xc. Employing 
(2.29) and (2.26), we find that 

where 

[ 2b0(xc) ]1/2 
373v n:0, x= x<- ~/3~r (2.32) 

bo(xc) - l + ~ 
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with 

/3 + (/32 + 4,0~),t2 
X= 

2 

The integral in the denominator of (2.31) is thus asymptotically equal to 

2e X 2 + %  2 

The integral in the numerator of (2.31) is also evaluated asymptotically by 
Laplace's method in which the major contribution comes from ( x  a ,0). 
Thus we obtain 

2~r%e u</~ 
"r2(/)~ (2.33) 

~,[(/3 2 + 4~:)'/2 fi] 

This agrees with Kramers' /3 = O(1) result (1.6) but does not agree with 
Kramers' small 17 result (1.4). It is clear that (2.33) cannot be a valid 
approximation to the mean first passage time for small/3, since E = E~ is 
contained within F, which implies that ~-2(A) > ~h(A). This contradiction is 
due to the fact that for small/3, the curve E = E~ lies within the boundary 
layer near F. To obtain the correct expression for ~-2(A), we iterate the 
identity (2.22) by writing 

= G (~, ~1, x ,  y)'c(zn)(~, ~1) ds~ n (2.34) "l'(n+ l)( x, y) 'Tt( X, y) -'I-~)E= Ec 

0 As a first iterate, we use ~-2((,~/)= .r2(A)v((,~l), in the right-hand side of 
(2.34), with "r2(A ) and v, respectively, given by (2.33) and (2.30). We 
observe that the iteration procedure converges in one step, since 

= ~ ( x ,  9') 

E~ 
= ~,(x, y)+ ~=  E<96E= 

= ~,(~, y) +r G(.,v,~, y)~~ .~)(~, y) 
E=E~ 

(2.35) 
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The last equation follows from the fact that G(u, v, x, y) and CE= E~G(~, ~, x, 
y)G(u, v, ~, ~)ds,n are both solutions of LG = 0 for (u, v) in E < E~, and are 
equal on E = Ec. Setting (x, y ) =  (x A , 0), we observe that the right-hand 
side of (2.35) may be interpreted as the sum of the time ~-j(A) to go from 
(x A ,0) to E = E,, plus the time to go from a point (x,y~(x)) on E = E~ to 
F, weighted by the density p(x) of starting points on E = E~ [given by 
(2.21)]. The weighted time from a point (x, yc(x)) on E = E~, is the time 
~-2(E~) to go from E = E~ to F. Since trajectories that reach F are equally 
likely to cross or to return to E = E~, the time ~-2(Er must be counted 
twice. Therefore the crossing rate is given by 

1 
K =  

with ~-1(A) given by (1.9) and ~-2(E~) given by (1.10). 
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APPENDIX 

In this appendix we show that 07 in (1.11) is O(~/-fl) for small ft. In 
that case the curve E = E c is near F, so that we expandyr(x ) aboutyc(x) as 

(Xyc(X)dX + o( fi) y~(x) =y~(x)  yc(x) ~xc 

Employing this expression in (2.28), we obtain 

fl fx~Y~(x)dx+ o(fl ) O(x, y~(x)) - yc(x) 

The function y(x) is estimated by setting 7 ( x ) =  7o(X)/ffl ,  where 70(x) 
satisfies the equation 

+   7o(X) - I + 

and the condition 

Since the solution 70(x) is bounded, independent of B, we see that 

P(x, Y~(X))7(x) = 0 ( ~ )  
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Finally, we remark that to evaluate the function V in (1.11) we employ the 
expression 

~ -  ~'~ s - U(x))] '/2 
o r =  [2 (e [ - -  ' '2 xc 

for all/3. 
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